

Equipo para controlar sistemas enfriadores con múltiples opciones de funcionamiento.

Índice del documento:

- 1 Datos técnicos.
- 2 Instalación y conexionado.
- 3 Marcación y señalizaciones.
- 4 Funcionamiento.
- 5 Ajuste y configuración.
- 6 Parámetros y mensajes.
- 7 Funcionamiento del Relé.
- 8 Mantenimiento.
- 9 Advertencias.

1.- DATOS TÉCNICOS

Versión software	310
Rango de temperaturas	50°C a 99°C
Resolución	0,1°C
Diferencial mínimo	0,1°C
Entrada para sonda NTC	6K8/10K (25°C)
Precisión	± 1%
Tolerancia de la sonda a 25°C	± 0,4°C
Sonda de conductividad SC estándar, precisión	± 2 %
Potencia máxima absorbida	1,5 VA
Temperatura ambiente de trabajo	0°C a 55°C
Temperatura de almacenamiento	30°C a 70°C
Clasificación del instrumento: De montaje ind	ependiente, de
característica de funcionamiento automático de a	acción 1.B, para
utilización en situaciones limpias, software tipo A.	

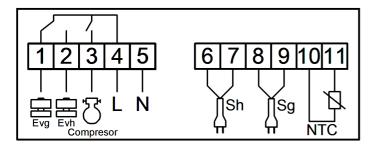
Doble aislamiento entre alimentación, circuito secundario y salida de relé.

2.- INSTALACIÓN Y CONEXIONADO.

El instrumento se debe instalar en lugar protegido del agua, gases corrosivos y vibraciones, la temperatura del emplazamiento no deberá superar lo especificado en los datos técnicos.

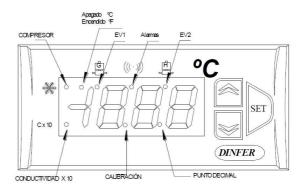
Para que la sonda realice una lectura correcta, se debe ubicar en lugar sin influencias térmicas ajenas a la temperatura que se desea controlar.

Para la sujeción del instrumento al panel, introducirlo por el hueco, de 70,5 x 28,5 mm situar el anclaje en las guías del instrumento y apretar el mismo contra el panel. Para quitar la



fijación presionar pestaña de liberación.

El conexionado viene en la etiqueta de características del equipo en el modo más completo.


A continuación detallamos

el conexionado del modo 3 de funcionamiento para máquinas bicubas de tercera generación V75/V175:

3.-MARCACIÓN Y SEÑALIZACION.

Este termostato funciona en múltiples modos diferentes. El frontal lleva incorporada la señalización completa. Los leds indicando las maniobras se iluminan según el modo de funcionamiento seleccionado.

Tecla subir.

Si pulsamos brevemente, visualizamos la temperatura de parada. En el menú de programación, aumenta el valor del parámetro.

Si la pulsamos brevemente nos da el valor del porcentaje de glicol disuelto en el agua. Si la calibración no ha sido realizada muestra el mensaje **NoG** de no medición de glicol. Dentro de la programación, baja el valor del parámetro

Tecla SET.

Pulsando esta tecla llegamos a la clave de acceso, una vez superada esta, pasamos a la muestra de alarmas. Si en ese momento hubiese alguna alarma activa, tendremos que volver a pulsarla para avanzar por el menú de configuración, hasta el parámetro deseado.

Señalización de las maniobras en la pantalla de visualización:

Led iluminado compresor en funcionamiento.

((-)) Led iluminado indica alarma.

Led iluminado electro válvula de la cuba del glicol activa.

Led iluminado electro válvula de la cuba del hielo activa.

Cx10 Multiplicador de la conductividad por diez, activo.

O Punto decimal.

O Proceso de calibración del glicol activo.

4.- FUNCIONAMIENTO.

Este termostato tiene 5 modos de funcionamiento diferentes, que son configurables al seleccionar la opción en LO4 en el menú de configuración, en este manual de usuario vamos a informar solo

del modo 3 bicuba, para los enfriadores V75 y V175, con sonda de temperatura NTC1 + Sonda de conductividad C1 en la cuba de glicol y sonda de conductividad C2 en la cuba de hielo.

5.- AJUSTE Y CONFIGURACIÓN.

Para acceder al ajuste de parámetros, pulsamos la tecla SET y nos aparece PAS, esperamos unos segundos y pasamos a la pantalla de edición, presentando el dato inicial 0. Con las teclas subir y bajar configuramos en la pantalla la clave de acceso y esperamos unos segundos. Si hay alguna alarma activa (señalizada con el LED de alarmas iluminado) el equipo procederá a mostrar el mensaje de alarma. Si hubiese más de una, aparecerán de forma secuencial. Para salir de la muestra de alarmas, volvemos a pulsar la tecla SET e irán apareciendo los parámetros configurables.

Pulsando la tecla SET nos situamos en el parámetro que deseemos modificar, según se detalla en la tabla del apartado 6.-, pasados unos segundos, se visualiza el valor grabado con anterioridad en este parámetro y usando las teclas subir o bajar lo ajustaremos al nuevo valor. Para grabarlo podemos pulsar la tecla SET (se grabará el valor y pasará al siguiente parámetro), o simplemente podemos esperar 2 segundos (se grabará el nuevo valor y volverá a la pantalla principal).

6.- TABLA DE PARÁMETROS Y MENSAJES.

Código	Descripción	Min.	Def.	Máx.	U/med
Ct	Transferencia de valores del termostato a la Copykey	0	0	1	Adimensional
dL	Transferencia de valores de la Copykey al termostato	0	0	1	Adimensional
	CONTROL DE TEMPERATI	JRA (So	nda NTC	:1)	
E00	Ajuste de temperatura de consigna	E06	-2.2	E05	°C
E01	Calibración de sonda de temperatura NTC1	-9.9	0.0	9.9	°C
E04	Diferencial entre paro y marcha (histéresis)	0.5	0.5	20.0	°C
E05	Punto de ajuste máximo de consigna	E00	1.0	99.0	°C
E06	Punto de ajuste mínimo de consigna	-40.0	-2.5	E00	°C
E07	Selección de sonda NTC (0→6K8 B=3977 1→10K B=3977 2→10K B=3435)	0	0	2	Adimensional
	CONTROL DE CONDUCTIVIDA	AD HIEL	O (Sond	a C2)	
C00	Ajuste de sonda C1 cubierta	5	400	4095	Adimensional
C01	Ajuste de sonda C1 descubierta	5	100	4095- C00	Adimensional
	CONTROL DE CONDUCTIVIDA	D GLIC	L (Son	da C1)	
C02	Recalibración de la concentración de glicol	0	0	1	Adimensional
C03	Ajuste de la detección de hielo en el glicol	5	800	4095	Adimensional
	ALARMA	s			
A00	Alarma por alta temperatura en sonda NTC1. 0 = desactivada	0	2	10	°C
A01	Alarma por baja temperatura en sonda NTC1. 0 = desactivada	0	1	10	°C
A02	Retardo de alarmas de temperatura en la puesta en marcha, si A00 y A01 no son 0	0	250	250	min.
A03	Temporizador de seguridad de exceso de funcionamiento.	0	0	20	Horas
	FUNCIONE	S			
L01	Retardo de marcha del compresor en el conexionado.	0	30	250	Segundos
L03	Parámetros iniciales. (1 = configuración a valores por defecto)	0	0	1	Adimensional
L04	Selección del modo de funcionamiento	1	3	5	Adimensional
L06	Selección de la prioridad de la cuba. Prioridad cuba de glicol = 2	1	2	2	Adimensional
L11	Retardo a la conexión del compresor	0	30	250	Segundos
L16	Temporizador de parada obligatoria del compresor	0	3	25	Minutos
L20	Temporizador de funcionamiento obligatorio del compresor	0	2	7	Minutos
L25	Cambio de presentación de la temperatura °C/°F (1= °C 2=°F)	1	1	2	Adimensional
L80	Clave 1 del equipo para el operario	0	25	999	Adimensional

Visualización de las alarmas.

Se ha previsto que en la pantalla del termostato que se ilumine el LED de señalización de alarma durante el tiempo que dure la situación que la provoca. Esta alarma es visualizada con un mensaje en un carrusel de alarmas (si hay varias activas), cuando se pulsa set y se introduce la clave de operario o administrador.

TIPO DE ALRMA	MENSAJE	RESPUESTA	DESBLOQUEO
Sonda NTC1 cortada o no presente	P1	Señalización de alarma y paro del compresor	Al restablecer la sonda
Alarma por alta temperatura	ALH	Señalización de alarma	Al bajar la temperatura
Alarma por baja temperatura	ALL	Señalización de alarma y paro del compresor	Al subir la temperatura
Alarma hielo en la cuba	AHG	Señalización de alarma y paro del compresor	Al dejar de detectar hielo
Sonda C1 cortada o no presente	C1	Señalización de alarma	Al restablecer la sonda
Sonda C2 cortada o no presente	C2	Señalización de alarma	Al restablecer la sonda
Tiempo de funcionamiento del compresor excedido	A03	Señalización de alarma y paro del compresor	Al resetear el termostato o la máquina

Mensajes en la pantalla

MENSAJES POR PANTALLA			
PA	Petición de password		
	Sonda de temperatura desconectada. Sin temperatura		
GLC	Petición de medición de porcentaje de glicol		
NoG	No es posible realizar la medición del porcentaje de glicol		
ICE4	Mensaje permanente en pantalla al seleccionar modo 4 hielo		
ICE5	Mensaje permanente en pantalla al seleccionar modo 5 hielo		
Ax	Mensaje del modo x seleccionado (donde x=1,2,3,4)		
On	Traspaso correcto de valores entre el equipo y la copy Key o viceversa		
Err	Error de traspaso de valores entre el equipo y la copy Key o viceversa		

7.- FUNCIONAMIENTO DEL RELE.

Se ha previsto un relé de 16 amperios resistivos (1CV de potencia) con capacidad de para el manejo directo del compresor y un relé de 6 amperios resistivos para el manejo de la electroválvula.

8.- MANTENIMIENTO.

Para limpiar el instrumento utilice un paño húmedo con agua y jabón, no use compuestos abrasivos ni disolventes orgánicos ni inorgánicos.

9.- ADVERTENCIAS.

El uso de este instrumento no respetando las instrucciones del fabricante, puede alterar los requisitos de seguridad del mismo. Este instrumento de medición y control funciona correctamente usando las sondas tipo NTC 6K8/10K y las sondas de conductividad SC suministradas por *DINFER electrónica* así como de otros fabricantes. *DINFER electrónica* se reserva todos los derechos sobre esta publicación. *DINFER electrónica* es propietaria de la marca